
desdeo_mcdm
Release 1.0

Multiobjective Optimization Group

Jun 06, 2021

CONTENTS

1 Requirements 3

2 Installation 5
2.1 For users . 5
2.2 For developers . 5

3 Currently implemented methods 59

4 Coming soon 61

5 Indices and tables 63

Python Module Index 65

Index 67

i

ii

desdeo_mcdm, Release 1.0

Contains interactive optimization methods for solving multiobjective optimizaton problems. This package is part of
the DESDEO framework.

CONTENTS 1

desdeo_mcdm, Release 1.0

2 CONTENTS

CHAPTER

ONE

REQUIREMENTS

• Python 3.7 (3.8 is NOT supported at the moment).

• Poetry dependency manager : Only for developers.

See pyproject.toml for Python package requirements.

3

https://python-poetry.org/

desdeo_mcdm, Release 1.0

4 Chapter 1. Requirements

CHAPTER

TWO

INSTALLATION

To install and use this package on a *nix-based system, follow one of the following procedures.

2.1 For users

First, create a new virtual environment for the project. Then install the package using the following command:

$ pip install desdeo-mcdm

2.2 For developers

Download the code or clone it with the following command:

$ git clone https://github.com/industrial-optimization-group/desdeo-mcdm

Then, create a new virtual environment for the project and install the package in it:

$ cd desdeo-mcdm
$ poetry init
$ poetry install

2.2.1 Background concepts

NAUTILUS

In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the previous
one. Although only the last solution will be Pareto optimal, the decision maker never looses sight of the Pareto
optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the Pareto optimal
set. Each new solution is obtained by minimizing an achievement scalarizing function including preferences about
desired improvements in objective function values.

The decision maker has two possibilities to provide her/his preferences:

1. The decision maker can rank the objectives according to the relative importance of improving each current
objective value.

5

desdeo_mcdm, Release 1.0

Note: This ranking is not a global preference ranking of the objectives, but represents the local importance of
improving each of the current objective values at that moment.

2. The decision maker can specify percentages reflecting how (s)he would like to improve the current objective
values, by answering to the following question:

“Assuming you have one hundred points available, how would you distribute them among the current objective values
so that the more points you allocate, the more improvement on the corresponding current objective value is desired?”

After each iteration round, the decision maker specifies whether (s)he wishes to continue with the previous preference
information, or define a new one.

In addition to this, the decision maker can influence the solution finding process by taking a step back to previous
iteration point. This enables the decision maker to provide new preferences and change the direction of solution
seeking process. Furthermore, the decision maker can also take a half-step in case (s)he feels that a full step limits the
reachable area of Pareto optimal set too much.

NAUTILUS is specially suitable for avoiding undesired anchoring effects, for example in negotiation support prob-
lems, or just as a means of finding an initial Pareto optimal solution for any interactive procedure.

NIMBUS

As its name suggests, NIMBUS (Nondifferentiable Interactive Multiobjective BUndle-based optimization System) is
a multiobjective optimization system able to handle even non-differentiable functions. It will optimize (minimize or
maximize) several functions simultaneously, creating a group of different solutions. One cannot say which one of
them is the best, because the system cannot know the criteria affecting the ‘goodness’ of the desired solution. The user
is the one that makes the decision.

Mathematically, all the generated solutions are ‘equal’, so it is important that the user can influence the solution
process. The user may want to choose which of the functions should be optimized most, the limits of the objectives,
etc. In NIMBUS, this phase is called a ‘classification’. Searching for the desired solution means finding the best
compromise between many different goals. If we want to get lower values for one function, we must be ready to
accept the growth of another function. This is because the solutions produced by NIMBUS are Pareto optimal. This
means that there is no possibility to achieve better solutions for some component of the problem without worsening
some other component(s).

The Reference Point Method

In the Reference Point Method, the Decision Maker (DM) specifies desirable aspiration levels for objective functions.
Vectors formed of these aspiration levels are then used to derive scalarizing functions having minimal values at weakly,
properly or Pareto optimal solutions. It is important that reference points are intuitive and easy for the DM to specify,
their consistency is not an essential requirement. Before the solution process starts, some information is given to
the DM about the problem. If possible, the ideal objective vector and the (approximated) nadir objective vector are
presented.

At each iteration, the DM is asked to give desired aspiration levels for the objective functions. Using this information
to formulate a reference point, achievement function is minimized and a (weakly, properly or) Pareto optimal solution
is obtained. This solution is then presented to the DM. In addition, k other (weakly, properly or) Pareto optimal
solutions are calculated using perturbed reference points, where k is the number of objectives in the problem. The
alternative solutions are also presented to the DM. If (s)he finds any of the k + 1 solutions satisfactory, the solution
process is ended. Otherwise, the DM is asked to present a new reference point and the iteration described above is
repeated.

The idea in perturbed reference points is that the DM gets better understanding of the possible solutions around the
current solution. If the reference point is far from the Pareto optimal set, the DM gets a wider description of the Pareto

6 Chapter 2. Installation

desdeo_mcdm, Release 1.0

optimal set and if the reference point is near the Pareto optimal set, then a finer description of the Pareto optimal set is
given.

In this method, the DM has to specify aspiration levels and compare objective vectors. The DM is free to change
her/his mind during the process and can direct the solution process without being forced to understand complicated
concepts and their meaning. On the other hand, the method does not necessarily help the DM to find more satisfactory
solutions.

NAUTILUS 2

Similarly to NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the
previous one. Although only the last solution will be Pareto optimal, the Decision Maker (DM) never looses sight of
the Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the Pareto
optimal set. Each new solution is obtained by minimizing an achievement scalarizing function including preferences
about desired improvements in objective function values.

NAUTILUS 2 introduces a new preference handling technique which is easily understandable for the DM and allows
the DM to conveniently control the solution process. Preferences are given as direction of improvement for objectives.
In NAUTILUS 2, the DM has three ways to do this:

1. The DM sets the direction of improvement directly.

2. The DM defines the improvement ratio between two different objectives 𝑓𝑖 and 𝑓𝑗 . For example, if the DM
wishes that the improvement of fi by one unit should be accompanied with the improvement of 𝑓𝑗 by 𝑖𝑗 units.
Here, the DM selects an objective 𝑓𝑖(𝑖 = 1, . . . , 𝑘) and for each of the other objectives 𝑓𝑗 sets the value 𝑖𝑗 .
Then, the direction of improvement is defined by

𝑖 = 1 𝑎𝑛𝑑 𝑗 =𝑖𝑗 , 𝑗𝑖.

3. As a generalization of the approach 2, the DM sets values of improvement ratios freely for some selected pairs
of objective functions.

As with NAUTILUS, after each iteration round, the decision maker specifies whether (s)he wishes to continue with
the previous preference information, or define a new one.

In addition to this, the decision maker can influence the solution finding process by taking a step back to the previous
iteration point. This enables the decision maker to provide new preferences and change the direction of the solution
seeking process. Furthermore, the decision maker can also take a half-step in case (s)he feels that a full step limits the
reachable area of the Pareto optimal set too much.

2.2.2 API Documentation

desdeo_mcdm.interactive Package

This module contains interactive methods and related requests implemented as classes.

2.2. For developers 7

desdeo_mcdm, Release 1.0

Functions

validate_response(n_objectives, z_current, . . .) Validate decision maker’s response.
validate_preferences(n_objectives, response) Validate decision maker’s preferences.
validate_n2_preferences(n_objectives, re-
sponse)

Validate decision maker’s preferences in NAUTILUS 2.

validate_n_iterations(n_it) Validate decision maker’s preference for number of iter-
ations.

validate_response

desdeo_mcdm.interactive.validate_response(n_objectives, z_current, nadir, response,
first_iteration_bool)

Validate decision maker’s response.

Parameters

• n_objectives (int) – Number of objectives.

• z_current (np.ndarray) – Current iteration point.

• nadir (np.ndarray) – Nadir point.

• response (Dict) – Decision maker’s response containing preference information.

• first_iteration_bool (bool) – Indicating whether the iteration round is the first
one (True) or not (False).

Raises NautilusException – In case Decision maker’s response is not valid.

Return type None

validate_preferences

desdeo_mcdm.interactive.validate_preferences(n_objectives, response)
Validate decision maker’s preferences.

Parameters

• n_objectives (int) – Number of objectives in problem.

• response (Dict) – Decision maker’s response containing preference information.

Raises NautilusException – In case preference info is not valid.

Return type None

8 Chapter 2. Installation

desdeo_mcdm, Release 1.0

validate_n2_preferences

desdeo_mcdm.interactive.validate_n2_preferences(n_objectives, response)
Validate decision maker’s preferences in NAUTILUS 2.

Parameters

• n_objectives (int) – Number of objectives in problem.

• response (Dict) – Decision maker’s response containing preference information.

Raises NautilusException – In case preference info is not valid.

Return type None

validate_n_iterations

desdeo_mcdm.interactive.validate_n_iterations(n_it)
Validate decision maker’s preference for number of iterations.

Parameters n_it (int) – Number of iterations.

Raises NautilusException – If number of iterations given is not a positive integer greater than
zero.

Return type None

Classes

ENautilus(pareto_front, ideal, nadir[, . . .])
ENautilusException Raised when an exception related to ENautilus is en-

countered.
ENautilusInitialRequest(ideal, nadir) A request class to handle the initial preferences.
ENautilusRequest(ideal, nadir, points, . . .) A request class to handle the intermediate requests.
ENautilusStopRequest(preferred_point) A request class to handle termination.
Nautilus(problem, ideal, nadir[, epsilon, . . .]) Implements the basic NAUTILUS method as presented

in |Miettinen_2010|.
NautilusV2(problem, starting_point, ideal, nadir) Implements the NAUTILUS 2 method as presented in

|Miettinen_2015|.
NautilusException Raised when an exception related to Nautilus is encoun-

tered.
NautilusInitialRequest(ideal, nadir) A request class to handle the Decision maker’s initial

preferences for the first iteration round.
NautilusRequest(z_current, nadir, . . .) A request class to handle the Decision maker’s prefer-

ences after the first iteration round.
NautilusStopRequest(x_h, f_h) A request class to handle termination.
NautilusNavigator(pareto_front, ideal, nadir) Implementations of the NAUTILUS Navigator algo-

rithm.
NautilusNavigatorException Raised when an exception related to NAUTILUS Navi-

gator is encountered.
NautilusNavigatorRequest(ideal, nadir, . . .) Request to handle interactions with NAUTILUS Navi-

gator.
NIMBUS(problem[, scalar_method]) Implements the synchronous NIMBUS algorithm.

continues on next page

2.2. For developers 9

desdeo_mcdm, Release 1.0

Table 2 – continued from previous page
NimbusException Risen when an error related to NIMBUS is encountered.
NimbusClassificationRequest(method, ref) A request to handle the classification of objectives in the

synchronous NIMBUS method.
NimbusIntermediateSolutionsRequest(. . .) A request to handle the computation of intermediate

points between two previously computed points.
NimbusMostPreferredRequest(solution_vectors,
. . .)

A request to handle the indication of a preferred point.

NimbusSaveRequest(solution_vectors, . . .) A request to handle archiving of the solutions computed
with NIMBUS.

NimbusStopRequest(solution_final, . . .) A request to handle the termination of Synchronous
NIMBUS.

ReferencePointMethod(problem, ideal, nadir) Implements the Reference Point Method as presented in
|Wierzbicki_1982|.

RPMException Raised when an exception related to Reference Point
Method (RFM) is encountered.

RPMInitialRequest(ideal, nadir) A request class to handle the Decision Maker’s initial
preferences for the first iteration round.

RPMRequest(f_current, f_additionals, ideal, . . .) A request class to handle the Decision Maker’s prefer-
ences after the first iteration round.

RPMStopRequest(x_h, f_h) A request class to handle termination.

ENautilus

class desdeo_mcdm.interactive.ENautilus(pareto_front, ideal, nadir, objective_names=None,
minimize=None)

Bases: desdeo_mcdm.interactive.InteractiveMethod.InteractiveMethod

Methods Summary

calculate_bounds(pareto_front, . . .) Calculate the new bounds of the reachable points on
the Pareto optimal front from each of the intermedi-
ate points.

calculate_distances(intermediate_points,
. . .) rtype ndarray

calculate_intermediate_points(. . .) Calcualtes the intermediate points between represen-
tative points an a preferred point.

calculate_reachable_point_indices(. . .) Calculate the indices of the reachable Pareto optimal
solutions based on lower and upper bounds.

calculate_representative_points(. . .) Calcualtes the most representative points on the
Pareto front.

handle_initial_request(request) Handles the initial request by parsing the response
appropiately.

handle_request(request) Handles the intermediate requests.
iterate(request) Perform the next logical iteratino step based on the

given request type.
start()

rtype ENautilusInitialRequest

10 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Methods Documentation

calculate_bounds(pareto_front, intermediate_points)
Calculate the new bounds of the reachable points on the Pareto optimal front from each of the intermediate
points.

Parameters

• pareto_front (np.ndarray) – The Pareto optimal front.

• intermediate_points (np.ndarray) – The current intermedaite points as a 2D
array.

Returns The lower and upper bounds for each of the intermediate points.

Return type Tuple[np.ndarray, np.ndarray]

calculate_distances(intermediate_points, zbars, nadir)

Return type ndarray

calculate_intermediate_points(preferred_point, zbars, n_iterations_left)
Calcualtes the intermediate points between representative points an a preferred point.

Parameters

• preferred_point (np.ndarray) – The preferred point, 1D array.

• zbars (np.ndarray) – The representative points, 2D array.

• n_iterations_left (int) – The number of iterations left.

Returns The intermediate points as a 2D array.

Return type np.ndarray

calculate_reachable_point_indices(pareto_front, lower_bounds, upper_bounds)
Calculate the indices of the reachable Pareto optimal solutions based on lower and upper bounds.

Returns List of the indices of the reachable solutions.

Return type List[int]

calculate_representative_points(pareto_front, subset_indices, n_points)
Calcualtes the most representative points on the Pareto front. The points are clustered using k-means.

Parameters

• pareto_front (np.ndarray) – The Pareto front.

• subset_indices (List[int]) – A list of indices representing the

• of the points on the Pareto front for which the (subset) –

• points should be calculated. (representative) –

• n_points (int) – The number of representative points to be calculated.

Returns A 2D array of the most representative points. If the subset of Pareto efficient points is
less than n_points, returns the subset of the Pareto front.

Return type np.ndarray

handle_initial_request(request)
Handles the initial request by parsing the response appropiately.

Return type ENautilusRequest

2.2. For developers 11

desdeo_mcdm, Release 1.0

handle_request(request)
Handles the intermediate requests.

Return type Union[ENautilusRequest, ENautilusStopRequest]

iterate(request)
Perform the next logical iteratino step based on the given request type.

Return type Union[ENautilusRequest, ENautilusStopRequest]

start()

Return type ENautilusInitialRequest

ENautilusException

exception desdeo_mcdm.interactive.ENautilusException
Raised when an exception related to ENautilus is encountered.

ENautilusInitialRequest

class desdeo_mcdm.interactive.ENautilusInitialRequest(ideal, nadir)
Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle the initial preferences.

Attributes Summary

response

Methods Summary

init_with_method(method)
validator(response)

rtype None

Attributes Documentation

response

12 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Methods Documentation

classmethod init_with_method(method)

validator(response)

Return type None

ENautilusRequest

class desdeo_mcdm.interactive.ENautilusRequest(ideal, nadir, points, lower_bounds, up-
per_bounds, distances, minimize)

Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle the intermediate requests.

Attributes Summary

response

Methods Summary

validator(response)
rtype None

Attributes Documentation

response

Methods Documentation

validator(response)

Return type None

ENautilusStopRequest

class desdeo_mcdm.interactive.ENautilusStopRequest(preferred_point)
Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle termination.

2.2. For developers 13

desdeo_mcdm, Release 1.0

Nautilus

class desdeo_mcdm.interactive.Nautilus(problem, ideal, nadir, epsilon=1e-06, objec-
tive_names=None, minimize=None)

Bases: desdeo_mcdm.interactive.InteractiveMethod.InteractiveMethod

Implements the basic NAUTILUS method as presented in .

In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the pre-
vious one. Although only the last solution will be Pareto optimal, the decision maker never looses sight of the
Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the
Pareto optimal set. Each new solution is obtained by minimizing an achievement scalarizing function including
preferences about desired improvements in objective function values.

The decision maker has two possibilities to provide her/his preferences:

1. The decision maker can rank the objectives according to the relative importance of improving each current
objective value.

Note: This ranking is not a global preference ranking of the objectives, but represents the local importance of
improving each of the current objective values at that moment.

2. The decision maker can specify percentages reflecting how (s)he would like to improve the current objective
values, by answering to the following question:

“Assuming you have one hundred points available, how would you distribute them among the current objective
values so that the more points you allocate, the more improvement on the corresponding current objective value
is desired?”

After each iteration round, the decision maker specifies whether (s)he wishes to continue with the previous
preference information, or define a new one.

In addition to this, the decision maker can influence the solution finding process by taking a step back to
previous iteration point. This enables the decision maker to provide new preferences and change the direction
of solution seeking process. Furthermore, the decision maker can also take a half-step in case (s)he feels that a
full step limits the reachable area of Pareto optimal set too much.

NAUTILUS is specially suitable for avoiding undesired anchoring effects, for example in negotiation support
problems, or just as a means of finding an initial Pareto optimal solution for any interactive procedure.

Parameters

• problem (MOProblem) – Problem to be solved.

• ideal (np.ndarray) – The ideal objective vector of the problem.

• nadir (np.ndarray) – The nadir objective vector of the problem. This may also be
the “worst” objective vector provided by the Decision maker if the approximation of Nadir
vector is not applicable or if the Decision maker wishes to provide even worse objective
vector than what the approximated Nadir vector is.

• epsilon (float) – A small number used in calculating the utopian point.

• objective_names (Optional[List[str]], optional) – Names of the objec-
tives. List must match the number of columns in ideal.

• minimize (Optional[List[int]], optional) – Multipliers for each objective.
‘-1’ indicates maximization and ‘1’ minimization. Defaults to all objective values being
minimized.

14 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Raises NautilusException – One or more dimension mismatches are encountered among the
supplies arguments.

Methods Summary

calculate_bounds(objectives, n_objectives,
. . .)

Calculate the new bounds using Epsilon constraint
method.

calculate_distance(z_current, nadir,
f_current)

Calculates the distance from current iteration point
to the Pareto optimal set.

calculate_iteration_point(itn, z_prev,
f_current)

Calculate next iteration point towards the Pareto op-
timal solution.

calculate_preferential_factors(pref_method,
. . .)

Calculate preferential factors based on the Decision
maker’s preference information.

handle_initial_request(request) Handles the initial request by parsing the response
appropriately.

handle_request(request) Handle Decision maker’s requests after the first iter-
ation round, so called intermediate requests.

iterate(request) Perform the next logical iteration step based on the
given request type.

solve_asf(ref_point, x0, . . .) Solve Achievement scalarizing function.
start() Start the solution process with initializing the first

request.

Methods Documentation

calculate_bounds(objectives, n_objectives, x0, epsilons, bounds, constraints, method)
Calculate the new bounds using Epsilon constraint method.

Parameters

• objectives (np.ndarray) – The objective function values for each input vector.

• n_objectives (int) – Total number of objectives.

• x0 (np.ndarray) – Initial values for decision variables.

• epsilons (np.ndarray) – Previous iteration point.

• bounds (Union[np.ndarray, None) – Bounds for decision variables.

• constraints (Callable) – Constraints of the problem.

• method (Union[ScalarMethod, str, None]) – The optimization method the
scalarizer should be minimized with.

Returns New lower bounds for objective functions.

Return type new_lower_bounds (np.ndarray)

calculate_distance(z_current, nadir, f_current)
Calculates the distance from current iteration point to the Pareto optimal set.

Parameters

• z_current (np.ndarray) – Current iteration point.

• nadir (np.ndarray) – Nadir vector.

2.2. For developers 15

desdeo_mcdm, Release 1.0

• f_current (np.ndarray) – Current optimal objective vector.

Returns Distance to the Pareto optimal set.

Return type np.ndarray

calculate_iteration_point(itn, z_prev, f_current)
Calculate next iteration point towards the Pareto optimal solution.

Parameters

• itn (int) – Number of iterations left.

• z_prev (np.ndarray) – Previous iteration point.

• f_current (np.ndarray) – Current optimal objective vector.

Returns Next iteration point.

Return type np.ndarray

calculate_preferential_factors(pref_method, pref_info, nadir, utopian)
Calculate preferential factors based on the Decision maker’s preference information. These preferential
factors are used as weights for objectives when solving an Achievement scalarizing function. The Decision
maker (DM) has two possibilities to provide her/his preferences:

1. The DM can rank the objectives according to the relative importance of improving each current objec-
tive value.

Note: This ranking is not a global preference ranking of the objectives, but represents the local importance
of improving each of the current objective values at that moment.

2. The DM can specify percentages reflecting how (s)he would like to improve the current objective values,
by answering to the following question:

“Assuming you have one hundred points available, how would you distribute them among the current
objective values so that the more points you allocate, the more improvement on the corresponding current
objective value is desired?”

Parameters

• pref_method (int) – Preference information method (either ranks (1) or percentages
(2)).

• pref_info (np.ndarray) – Preference information on how the DM wishes to im-
prove the values of each objective function.

• nadir (np.ndarray) – Nadir vector.

• utopian (np.ndarray) – Utopian vector.

Returns Weights assigned to each of the objective functions in achievement scalarizing function.

Return type np.ndarray

16 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Examples

>>> pref_method = 1 # ranks
>>> pref_info = np.array([2, 2, 1, 1]) # first and second objective are the
→˓most important to improve
>>> nadir = np.array([-4.75, -2.87, -0.32, 9.71])
>>> utopian = np.array([-6.34, -3.44, -7.5, 0.])
>>> calculate_preferential_factors(pref_method, pref_info, nadir, utopian)
array([0.31446541, 0.87719298, 0.13927577, 0.10298661])

>>> pref_method = 2 # percentages
>>> pref_info = np.array([10, 30, 40, 20]) # DM wishes to improve most the
→˓value of objective 3, then 2,4,1
>>> nadir = np.array([-4.75, -2.87, -0.32, 9.71])
>>> utopian = np.array([-6.34, -3.44, -7.5, 0.])
>>> calculate_preferential_factors(pref_method, pref_info, nadir, utopian)
array([6.28930818, 5.84795322, 0.34818942, 0.51493306])

handle_initial_request(request)
Handles the initial request by parsing the response appropriately.

Parameters request (NautilusInitialRequest) – Initial request including Decision
maker’s initial preferences.

Returns New request with updated solution process information.

Return type NautilusRequest

handle_request(request)
Handle Decision maker’s requests after the first iteration round, so called intermediate requests.

Parameters request (NautilusRequest) – Intermediate request including Decision
maker’s response.

Returns In case last iteration, request to stop the solution process. Otherwise, new request with
updated solution process information.

Return type Union[NautilusRequest, NautilusStopRequest]

iterate(request)
Perform the next logical iteration step based on the given request type.

Parameters request (Union[NautilusInitialRequest, NautilusRequest])
– Either initial or intermediate request.

Returns A new request with content depending on the Decision maker’s preferences.

Return type Union[NautilusRequest, NautilusStopRequest]

solve_asf(ref_point, x0, preferential_factors, nadir, utopian, objectives, variable_bounds, method)
Solve Achievement scalarizing function.

Parameters

• ref_point (np.ndarray) – Reference point.

• x0 (np.ndarray) – Initial values for decision variables.

• preferential_factors (np.ndarray) – preferential factors on how much would
the decision maker wish to improve the values of each objective function.

• nadir (np.ndarray) – Nadir vector.

2.2. For developers 17

desdeo_mcdm, Release 1.0

• utopian (np.ndarray) – Utopian vector.

• objectives (np.ndarray) – The objective function values for each input vector.

• variable_bounds (Optional[np.ndarray) – Lower and upper bounds of each
variable as a 2D numpy array. If undefined variables, None instead.

• method (Union[ScalarMethod, str, None) – The optimization method the
scalarizer should be minimized with

Returns A dictionary with at least the following entries: ‘x’ indicating the optimal variables
found, ‘fun’ the optimal value of the optimized function, and ‘success’ a boolean indicating
whether the optimization was conducted successfully.

Return type Dict

start()
Start the solution process with initializing the first request.

Returns Initial request.

Return type NautilusInitialRequest

NautilusV2

class desdeo_mcdm.interactive.NautilusV2(problem, starting_point, ideal, nadir, epsilon=1e-
06, objective_names=None, minimize=None)

Bases: desdeo_mcdm.interactive.InteractiveMethod.InteractiveMethod

Implements the NAUTILUS 2 method as presented in .

Similarly to NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates
the previous one. Although only the last solution will be Pareto optimal, the Decision Maker (DM) never looses
sight of the Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred
part of the Pareto optimal set. Each new solution is obtained by minimizing an achievement scalarizing function
including preferences about desired improvements in objective function values.

NAUTILUS 2 introduces a new preference handling technique which is easily understandable for the DM and
allows the DM to conveniently control the solution process. Preferences are given as direction of improvement
for objectives. In NAUTILUS 2, the DM has three ways to do this:

1. The DM sets the direction of improvement directly.

2. The DM defines the improvement ratio between two different objectives fi and fj. For example, if the
DM wishes that the improvement of fi by one unit should be accompanied with the improvement of fj by ij
units. Here, the DM selects an objective fi (i=1,. . . ,k) and for each of the other objectives fj sets the value
ij. Then, the direction of improvement is defined by

i=1 and j=ij, ji.

3. As a generalization of the approach 2, the DM sets values of improvement ratios freely for some selected
pairs of objective functions.

As with NAUTILUS, after each iteration round, the decision maker specifies whether (s)he wishes to continue
with the previous preference information, or define a new one.

In addition to this, the decision maker can influence the solution finding process by taking a step back to the
previous iteration point. This enables the decision maker to provide new preferences and change the direction
of the solution seeking process. Furthermore, the decision maker can also take a half-step in case (s)he feels
that a full step limits the reachable area of the Pareto optimal set too much.

Parameters

18 Chapter 2. Installation

desdeo_mcdm, Release 1.0

• problem (MOProblem) – Problem to be solved.

• starting_point (np.ndarray) – Objective vector used as a starting point for
method.

• ideal (np.ndarray) – The ideal objective vector of the problem being represented by
the Pareto front.

• nadir (np.ndarray) – The nadir objective vector of the problem being represented by
the Pareto front.

• epsilon (float) – A small number used in calculating the utopian point. By default
1e-6.

• objective_names (Optional[List[str]], optional) – Names of the objec-
tives. The length of the list must match the number of columns in ideal.

• minimize (Optional[List[int]], optional) – Multipliers for each objective.
‘-1’ indicates maximization and ‘1’ minimization. Defaults to all objective values being
minimized.

Raises NautilusException – One or more dimension mismatches are encountered among the
supplies arguments.

Methods Summary

calculate_bounds(objectives, n_objectives,
. . .)

Calculate the new bounds using Epsilon constraint
method.

calculate_distance(z_current, . . .) Calculates the distance from current iteration point
to the Pareto optimal set.

calculate_doi(n_objectives, pref_info) Calculate direction of improvement based on im-
provement ratios between pairs of objective func-
tions.

calculate_iteration_point(itn, z_prev,
f_current)

Calculate next iteration point towards the Pareto op-
timal solution.

calculate_preferential_factors(n_objectives,
. . .)

Calculate preferential factors based on decision
maker’s preference information.

handle_initial_request(request) Handles the initial request by parsing the response
appropriately.

handle_request(request) Handle Decision maker’s requests after the first iter-
ation round, so-called intermediate requests.

iterate(request) Perform the next logical iteration step based on the
given request type.

solve_asf(ref_point, x0, . . . [, . . .]) Solve achievement scalarizing function.
start() Start the solution process with initializing the first

request.

2.2. For developers 19

desdeo_mcdm, Release 1.0

Methods Documentation

calculate_bounds(objectives, n_objectives, x0, epsilons, bounds, constraints, method)
Calculate the new bounds using Epsilon constraint method.

Parameters

• objectives (np.ndarray) – The objective function values for each input vector.

• n_objectives (int) – Total number of objectives.

• x0 (np.ndarray) – Initial values for decision variables.

• epsilons (np.ndarray) – Previous iteration point.

• bounds (Union[np.ndarray, None]) – Bounds for decision variables.

• constraints (Callable) – Constraints of the problem.

• method (Union[ScalarMethod, str, None]) – The optimization method the
scalarizer should be minimized with.

Returns New lower bounds for objective functions.

Return type np.ndarray

calculate_distance(z_current, starting_point, f_current)
Calculates the distance from current iteration point to the Pareto optimal set.

Parameters

• z_current (np.ndarray) – Current iteration point.

• starting_point (np.ndarray) – Starting iteration point.

• f_current (np.ndarray) – Current optimal objective vector.

Returns Distance to the Pareto optimal set.

Return type np.ndarray

calculate_doi(n_objectives, pref_info)
Calculate direction of improvement based on improvement ratios between pairs of objective functions.

Parameters

• n_objectives (int) – Number of objectives.

• pref_info (np.ndarray) – Preference information on how the DM wishes to im-
prove the values of each objective function.

Returns Direction of improvement.

Return type np.ndarray

calculate_iteration_point(itn, z_prev, f_current)
Calculate next iteration point towards the Pareto optimal solution.

Parameters

• itn (int) – Number of iterations left.

• z_prev (np.ndarray) – Previous iteration point.

• f_current (np.ndarray) – Current optimal objective vector.

Returns Next iteration point.

Return type np.ndarray

20 Chapter 2. Installation

desdeo_mcdm, Release 1.0

calculate_preferential_factors(n_objectives, pref_method, pref_info)
Calculate preferential factors based on decision maker’s preference information.

Parameters

• n_objectives (int) – Number of objectives in problem.

• pref_method (int) – Preference information method, either: Direction of improve-
ment (1), improvement ratios between a selected objective and rest of the objectives (2),
or improvement ratios freely for some selected pairs of objectives (3).

• pref_info (np.ndarray) – Preference information on how the DM wishes to im-
prove the values of each objective function. See the examples below.

Returns Direction of improvement. Used as weights assigned to each of the objective functions
in the achievement scalarizing function.

Return type np.ndarray

Examples

>>> n_objectives = 4
>>> pref_method = 1 # deltas directly
>>> pref_info = np.array([1, 2, 1, 2]), # second and fourth objective are
→˓the most important to improve
>>> calculate_preferential_factors(n_objectives, pref_method, pref_info)
np.array([1, 2, 1, 2])

>>> n_objectives = 4
>>> pref_method = 2 # improvement ratios between one selected objective and
→˓each other objective
>>> pref_info = np.array([1, 1.5, (7/3), 0.5]) # first objective's ratio is
→˓set to one
>>> calculate_preferential_factors(n_objectives, pref_method, pref_info)
np.array([1, 1.5, (7/3), 0.5])

>>> n_objectives = 4
>>> pref_method = 3 # improvement ratios between freely selected pairs of
→˓objectives
format the tuples like this: (('index of objective', 'index of objective'),
→˓'improvement ratio between the objectives')
>>> pref_info = np.array([((1, 2), 0.5), ((3, 4), 1), ((2, 3), 1.5)],
→˓dtype=object)
>>> calculate_preferential_factors(n_objectives, pref_method, pref_info)
np.array([1., 0.5, 0.75, 0.75])

Note: Remember to specify “dtype=object” in pref_info array when using preference method 3.

handle_initial_request(request)
Handles the initial request by parsing the response appropriately.

Parameters request (NautilusInitialRequest) – Initial request including Decision
maker’s initial preferences.

Returns New request with updated solution process information.

Return type NautilusRequest

2.2. For developers 21

desdeo_mcdm, Release 1.0

handle_request(request)
Handle Decision maker’s requests after the first iteration round, so-called intermediate requests.

Parameters request (NautilusRequest) – Intermediate request including Decision
maker’s response.

Returns In case last iteration, request to stop the solution process. Otherwise, new request with
updated solution process information.

Return type Union[NautilusRequest, NautilusStopRequest]

iterate(request)
Perform the next logical iteration step based on the given request type.

Parameters request (Union[NautilusInitialRequest, NautilusRequest])
– Either initial or intermediate request.

Returns A new request with content depending on the Decision maker’s preferences.

Return type Union[NautilusRequest, NautilusStopRequest]

solve_asf(ref_point, x0, preferential_factors, nadir, utopian, objectives, variable_bounds=None,
method=None)

Solve achievement scalarizing function.

Parameters

• ref_point (np.ndarray) – Reference point.

• x0 (np.ndarray) – Initial values for decision variables.

• preferential_factors (np.ndarray) – Preferential factors indicating how
much would the decision maker wish to improve the values of each objective function.

• nadir (np.ndarray) – Nadir vector.

• utopian (np.ndarray) – Utopian vector.

• objectives (np.ndarray) – The objective function values for each input vector.

• variable_bounds (Optional[np.ndarray]) – Lower and upper bounds of each
variable as a 2D numpy array. If undefined variables, None instead.

• method (Union[ScalarMethod, str, None]) – The optimization method the
scalarizer should be minimized with.

Returns A dictionary with at least the following entries: ‘x’ indicating the optimal variables
found, ‘fun’ the optimal value of the optimized function, and ‘success’ a boolean indicating
whether the optimization was conducted successfully.

Return type Dict

start()
Start the solution process with initializing the first request.

Returns Initial request.

Return type NautilusInitialRequest

22 Chapter 2. Installation

desdeo_mcdm, Release 1.0

NautilusException

exception desdeo_mcdm.interactive.NautilusException
Raised when an exception related to Nautilus is encountered.

NautilusInitialRequest

class desdeo_mcdm.interactive.NautilusInitialRequest(ideal, nadir)
Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle the Decision maker’s initial preferences for the first iteration round.

Attributes Summary

response

Methods Summary

init_with_method(method) Initialize request with given instance of Nautilus
method.

Attributes Documentation

response

Methods Documentation

classmethod init_with_method(method)
Initialize request with given instance of Nautilus method.

Parameters method (Nautilus) – Instance of Nautilus-class.

Returns Initial request.

Return type NautilusInitialRequest

NautilusRequest

class desdeo_mcdm.interactive.NautilusRequest(z_current, nadir, lower_bounds, up-
per_bounds, distance)

Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle the Decision maker’s preferences after the first iteration round.

2.2. For developers 23

desdeo_mcdm, Release 1.0

Attributes Summary

response

Attributes Documentation

response

NautilusStopRequest

class desdeo_mcdm.interactive.NautilusStopRequest(x_h, f_h)
Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle termination.

NautilusNavigator

class desdeo_mcdm.interactive.NautilusNavigator(pareto_front, ideal, nadir, objec-
tive_names=None, minimize=None)

Bases: desdeo_mcdm.interactive.InteractiveMethod.InteractiveMethod

Implementations of the NAUTILUS Navigator algorithm.

Methods Summary

calculate_bounds(pareto_front, nav_point) Calculate the new bounds of the reachable points on
the Pareto optimal front from a navigation point.

calculate_distance(nav_point, projection,
nadir)

Calculate the distance to the Pareto optimal front
from a navigation point.

calculate_navigation_point(projection,
. . .)

Calculate a new navigation point based on the pro-
jection of the preference point to the Pareto optimal
front.

calculate_reachable_point_indices(. . .) Calculate the indices of the reachable Pareto optimal
solutions based on lower and upper bounds.

handle_request(request) Handle the Request and its contents.
iterate(request) Perform the next logical step based on the response

in the Request.
solve_nautilus_asf_problem(pareto_f,
. . .)

Forms and solves the achievement scalarizing func-
tion to find the closesto point on the Pareto optimal
front to the given reference point.

start() Returns the first Request object to begin iterating.
update(ref_point, speed, go_to_previous, stop) Update the inernal state of self.

24 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Methods Documentation

calculate_bounds(pareto_front, nav_point)
Calculate the new bounds of the reachable points on the Pareto optimal front from a navigation point.

Parameters

• pareto_front (np.ndarray) – The Pareto optimal front.

• nav_point (np.ndarray) – The current navigation point.

Returns The lower and upper bounds.

Return type Tuple[np.ndarray, np.ndarray]

calculate_distance(nav_point, projection, nadir)
Calculate the distance to the Pareto optimal front from a navigation point. The distance is calculated to the
supplied projection which is assumed to lay on the front.

Parameters

• nav_point (np.ndarray) – The navigation point.

• projection (np.ndarray) – The point of the Pareto optimal front the distance is
calculated to.

• nadir (np.ndarray) – The nadir point of the Pareto optimal set.

Returns The distance.

Return type float

calculate_navigation_point(projection, nav_point, steps_remaining)
Calculate a new navigation point based on the projection of the preference point to the Pareto optimal
front.

Parameters

• projection (np.ndarray) – The point on the Pareto optimal front

• to the preference point given by a decision maker. (closest) –

• nav_point (np.ndarray) – The previous navigation point.

• steps_remaining (int) – How many steps are remaining in the navigation.

Returns The new navigation point.

Return type np.ndarray

calculate_reachable_point_indices(pareto_front, lower_bounds, upper_bounds)
Calculate the indices of the reachable Pareto optimal solutions based on lower and upper bounds.

Returns List of the indices of the reachable solutions.

Return type List[int]

handle_request(request)
Handle the Request and its contents.

Parameters request (NautilusNavigatorRequest) – A Request with a defined re-
sponse.

Returns Some of the contents of the response are invalid.

Return type NautilusNavigatorRequest

2.2. For developers 25

desdeo_mcdm, Release 1.0

iterate(request)
Perform the next logical step based on the response in the Request.

Return type NautilusNavigatorRequest

solve_nautilus_asf_problem(pareto_f, subset_indices, ref_point, ideal, nadir)
Forms and solves the achievement scalarizing function to find the closesto point on the Pareto optimal
front to the given reference point.

Parameters

• pareto_f (np.ndarray) – The whole Pareto optimal front.

• subset_indices ([type]) – Indices of the currently reachable solutions.

• ref_point (np.ndarray) – The reference point indicating a decision

• preference. (maker's) –

• ideal (np.ndarray) – Ideal point.

• nadir (np.ndarray) – Nadir point.

Returns Index of the closest point according the minimized value of the ASF.

Return type int

start()
Returns the first Request object to begin iterating.

Returns The Request.

Return type NautilusNavigatorRequest

update(ref_point, speed, go_to_previous, stop, step_number=None, nav_point=None,
lower_bounds=None, upper_bounds=None, reachable_idx=None, distance=None,
steps_remaining=None)

Update the inernal state of self.

Parameters

• ref_point (np.ndarray) – A reference point given by a decision maker.

• speed (int) – An integer value between 1-5 indicating the navigation speed.

• go_to_previous (bool) – If True, the parameters indicate the state

• a previous state (of) –

• the request is handled accordingly. (and) –

• stop (bool) – If the navigation should stop. If True, self.update return None.

• step_number (Optional[int], optional) – Current step number, or

• step number if go_to_previous is True. Defaults to None.
(previous) –

• nav_point (Optional[np.ndarray], optional) – The current

• point. Relevant if go_to_previous is True. Defaults to
(navigation) –

• None. –

• lower_bounds (Optional[np.ndarray], optional) – Lower bounds of

• reachable objective vector valus. Relevant if
go_to_previous (the) –

26 Chapter 2. Installation

desdeo_mcdm, Release 1.0

• True. Defaults to None. (is) –

• upper_bounds (Optional[np.ndarray], optional) – Upper bounds of

• reachable objective vector valus. Relevant if
go_to_previous –

• True. Defaults to None. –

• reachable_idx (Optional[List[int]], optional) – Indices of the

• Pareto optimal solutions. Relevant if go_to_previous is
(reachable) –

• Defaults to None. (True.) –

• distance (Optional[float], optional) – Distance to the Pareto

• front. Relevant if go_to_previous is True. Defaults to
(optimal) –

• None. –

• steps_remaining (Optional[int], optional) – Remaining steps in the

• Relevant if go_to_previous is True. Defaults to None.
(navigation.) –

Returns Some of the given parameters are erraneous.

Return type NautilusNavigatorRequest

NautilusNavigatorException

exception desdeo_mcdm.interactive.NautilusNavigatorException
Raised when an exception related to NAUTILUS Navigator is encountered.

NautilusNavigatorRequest

class desdeo_mcdm.interactive.NautilusNavigatorRequest(ideal, nadir, reachable_lb,
reachable_ub, reach-
able_idx, step_number,
steps_remaining, dis-
tance, allowed_speeds,
current_speed, naviga-
tion_point)

Bases: desdeo_tools.interaction.request.BaseRequest

Request to handle interactions with NAUTILUS Navigator. See the NautilusNavigator class for further details.

2.2. For developers 27

desdeo_mcdm, Release 1.0

Attributes Summary

response

Methods Summary

init_with_method(method)
validator(response)

rtype None

Attributes Documentation

response

Methods Documentation

classmethod init_with_method(method)

validator(response)

Return type None

NIMBUS

class desdeo_mcdm.interactive.NIMBUS(problem, scalar_method=None)
Bases: desdeo_mcdm.interactive.InteractiveMethod.InteractiveMethod

Implements the synchronous NIMBUS algorithm.

Parameters

• problem (MOProblem) – The problem to be solved.

• scalar_method (Optional[ScalarMethod], optional) – The method used
to solve the various ASF minimization problems present in the method. Defaults to None.

Methods Summary

calculate_new_solutions(number_of_solutions,
. . .)

Calcualtes new solutions based on classifications
supplied by the decision maker by

compute_intermediate_solutions(solutions,
. . .)

Computs intermediate solution between two solu-
tions computed earlier.

create_plot_request(objectives, msg) Used to create a plot request for visualizing objective
values.

handle_classification_request(request) Handles a classification request.
handle_intermediate_solutions_request(request)Handles an intermediate solutions request.
handle_most_preferred_request(request) Handles a preferres solution request.
handle_save_request(request) Handles a save request.

continues on next page

28 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Table 16 – continued from previous page
iterate(request) Implements a finite state machine to iterate over

the different steps defined in Synchronous NIMBUS
based on a supllied request.

request_classification()
rtype Tuple[NimbusClassificationRequest,

SimplePlotRequest]

request_most_preferred_solution(solutions,
. . .)

Create a NimbusMostPreferredRequest.

request_stop() Create a NimbusStopRequest based on self.
save_solutions_to_archive(objectives,
. . .)

Save solutions to the archive.

start() Return the first request to start iterating NIMBUS.
update_current_solution(solutions, . . .) Update the state of self with a new current solution

and the corresponding objective values.

Methods Documentation

calculate_new_solutions(number_of_solutions, levels, improve_inds, improve_until_inds, ac-
ceptable_inds, impaire_until_inds, free_inds)

Calcualtes new solutions based on classifications supplied by the decision maker by solving ASF
problems.

Parameters

• number_of_solutions (int) – Number of solutions, should be between 1 and 4.

• levels (np.ndarray) – Aspiration and upper bounds relevant to the some of the clas-
sifications.

• improve_inds (np.ndarray) – Indices corresponding to the objectives which
should be improved.

• improve_until_inds (np.ndarray) – Like above, but improved until an aspira-
tion level is reached.

• acceptable_inds (np.ndarray) – Indices of objectives which are acceptable as
they are now.

• impaire_until_inds (np.ndarray) – Indices of objectives which may be im-
paired until an upper limit is reached.

• free_inds (np.ndarray) – Indices of objectives which may change freely.

Returns A save request with the newly computed soutions, and a plot request to visualize said
solutions.

Return type Tuple[NimbusSaveRequest, SimplePlotRequest]

compute_intermediate_solutions(solutions, n_desired)
Computs intermediate solution between two solutions computed earlier.

Parameters

• solutions (np.ndarray) – The solutions between which the intermediat solutions
should be computed.

2.2. For developers 29

desdeo_mcdm, Release 1.0

• n_desired (int) – The number of intermediate solutions desired.

Raises NimbusException –

Returns A save request with the compured intermediate points, and a plot request to visualize
said points.

Return type Tuple[NimbusSaveRequest, SimplePlotRequest]

create_plot_request(objectives, msg)
Used to create a plot request for visualizing objective values.

Parameters

• objectives (np.ndarray) – A 2D numpy array containing objective vectors to be
visualized.

• msg (str) – A message to be displayed in the context of a visualization.

Returns A plot request to create a visualization.

Return type SimplePlotRequest

handle_classification_request(request)
Handles a classification request.

Parameters request (NimbusClassificationReuest) – A classification request with
the response attribute set.

Returns A NIMBUS save request and a plot request with the solutions the decision maker can
choose from to save for alter use.

Return type Tuple[NimbusSaveRequest, SimplePlotRequest]

handle_intermediate_solutions_request(request)
Handles an intermediate solutions request.

Parameters request (NimbusIntermediateSolutionsRequest) – A NIMBUS in-
termediate solutions request with the response attribute set.

Returns Return either a save request or a preferred solution request. The former is returned if
the decision maker wishes to see intermediate points, the latter otherwise. Also a plot request
is returned with the solutions available in it.

Return type Tuple[Union[NimbusSaveRequest, NimbusMostPreferredRequest], SimplePlotRe-
quest,]

handle_most_preferred_request(request)
Handles a preferres solution request.

Parameters request (NimbusMostPreferredRequest) – A NIMBUS preferred solu-
tion request with the response attribute set.

Returns Return a classificaiton request if the decision maker wishes to continue. If the decision
maker wishes to stop, return a stop request. Also return a plot request with all the solutions
saved so far.

Return type Tuple[Union[NimbusClassificationRequest, NimbusStopRequest], SimplePlotRe-
quest]

handle_save_request(request)
Handles a save request.

Parameters request (NimbusSaveRequest) – A save request with the response attribute
set.

30 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Returns Return an intermediate solution request where the decision maker can specify whether
they would like to see intermediate solution between two previously computed solutions.
The plot request has the available solutions.

Return type Tuple[NimbusIntermediateSolutionsRequest, SimplePlotRequest]

iterate(request)
Implements a finite state machine to iterate over the different steps defined in Synchronous NIMBUS based
on a supllied request.

Parameters request (Union[NimbusClassificationRequest,
NimbusSaveRequest,NimbusIntermediateSolutionsRequest,
NimbusMostPreferredRequest,NimbusStopRequest,]) – A request based on
the next step in the NIMBUS algorithm is taken.

Raises NimbusException – If a wrong type of request is supllied based on the current state
NIMBUS is in.

Returns The next logically sound request.

Return type Tuple[Union[NimbusClassificationRequest,NimbusSaveRequest,NimbusIntermediateSolutionsRequest,],Union[SimplePlotRequest,
None],]

request_classification()

Return type Tuple[NimbusClassificationRequest, SimplePlotRequest]

request_most_preferred_solution(solutions, objectives)
Create a NimbusMostPreferredRequest.

Parameters

• solutions (np.ndarray) – A 2D numpy array of decision variable vectors.

• objectives (np.ndarray) – A 2D numpy array of objective value vectors.

Returns The requests based on the given arguments.

Return type Tuple[NimbusMostPreferredRequest, SimplePlotRequest]

Note: The ‘i’th decision variable vector in solutions should correspond to the ‘i’th objective value vector
in objectives.

request_stop()
Create a NimbusStopRequest based on self.

Returns A stop request and a plot request with the final solution chosen in it.

Return type Tuple[NimbusStopRequest, SimplePlotRequest]

save_solutions_to_archive(objectives, decision_variables, indices)
Save solutions to the archive. Saves also the corresponding objective function values.

Parameters

• objectives (np.ndarray) – Available objectives.

• decision_variables (np.ndarray) – Available solutions.

• indices (List[int]) – Indices of the solutions to be saved.

2.2. For developers 31

desdeo_mcdm, Release 1.0

Returns An intermediate solutions request asking the decision maker whether they would like
to generate intermediata solutions between two existing solutions. Also returns a plot re-
quest to visualize the available solutions between which the intermediate solutions should be
computed.

Return type Tuple[NimbusIntermediateSolutionsRequest, None]

start()
Return the first request to start iterating NIMBUS.

Returns The first request and and a plot request to visualize relevant data.

Return type Tuple[NimbusClassificationRequest, SimplePlotRequest]

update_current_solution(solutions, objectives, index)
Update the state of self with a new current solution and the corresponding objective values. This solution
is used in the classification phase of synchronous NIMBUS.

Parameters

• solutions (np.ndarray) – A 2D numpy array of decision variable vectors.

• objectives (np.ndarray) – A 2D numpy array of objective value vectors.

• index (int) – The index of the solution in solutions and objectives.

Returns The requests based on the given arguments.

Return type Tuple[NimbusMostPreferredRequest, SimplePlotRequest]

Note: The ‘i’th decision variable vector in solutions should correspond to the ‘i’th objective value vector
in objectives.

NimbusException

exception desdeo_mcdm.interactive.NimbusException
Risen when an error related to NIMBUS is encountered.

NimbusClassificationRequest

class desdeo_mcdm.interactive.NimbusClassificationRequest(method, ref)
Bases: desdeo_tools.interaction.request.BaseRequest

A request to handle the classification of objectives in the synchronous NIMBUS method.

Parameters

• method (NIMBUS) – The instance of the NIMBUS method the request should be initialized
for.

• ref (np.ndarray) – Objective values used as a reference the decision maker is classify-
ing the objectives.

self._valid_classifications
The valid classifications. Defaults is [‘<’, ‘<=’, ‘=’, ‘>=’, ‘0’]

Type List[str]

32 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Attributes Summary

response

Methods Summary

validator(response) Validates a dictionary containing the response of a
decision maker.

Attributes Documentation

response

Methods Documentation

validator(response)
Validates a dictionary containing the response of a decision maker. Should contain the keys ‘classifica-
tions’, ‘levels’, and ‘number_of_solutions’.

‘classifications’ should be a list of strings, where the number of elements is equal to the number of ob-
jectives being classified, and the elements are found in _valid_classifications. ‘levels’ should have ei-
ther aspiration levels or bounds for each objective depending on that objective’s classification. ‘num-
ber_of_solutions’ should be an integer between 1 and 4 indicating the number of intermediate solutions to
be computed.

Parameters response (Dict) – See the documentation for validator.

Raises NimbusException – Some discrepancy is encountered in the parsing of the response.

Return type None

NimbusIntermediateSolutionsRequest

class desdeo_mcdm.interactive.NimbusIntermediateSolutionsRequest(solution_vectors,
objec-
tive_vectors)

Bases: desdeo_tools.interaction.request.BaseRequest

A request to handle the computation of intermediate points between two previously computed points.

Parameters

• solution_vectors (List[np.ndarray]) – A list of numpy arrays each represent-
ing a decision variable vector.

• objective_vectors (List[np.ndarray]) – A list of numpy arrays each repre-
senting an objective vector.

Note: The objective vector at position ‘i’ in objective_vectors should correspond to the decision variables at
position ‘i’ in solution_vectors. Only the two first entries in each of the lists is relevant. The rest is ignored.

2.2. For developers 33

desdeo_mcdm, Release 1.0

Attributes Summary

response

Methods Summary

validator(response) Validates a response dictionary.

Attributes Documentation

response

Methods Documentation

validator(response)
Validates a response dictionary. The dictionary should contain the keys ‘indices’ and ‘num-
ber_of_solutions’.

‘indices’ should be a list of integers representing an index to the lists solutions_vectors and objec-
tive_vectors. ‘number_of_solutions’ should be an integer greater or equal to 1.

Parameters response (Dict) – See the documentation for validator.

Raises NimbusException – Some discrepancy is encountered in the parsing of response.

NimbusMostPreferredRequest

class desdeo_mcdm.interactive.NimbusMostPreferredRequest(solution_vectors, objec-
tive_vectors)

Bases: desdeo_tools.interaction.request.BaseRequest

A request to handle the indication of a preferred point.

Parameters

• solution_vectors (List[np.ndarray]) – A list of numpy arrays each represent-
ing a decision variable vector.

• objective_vectors (List[np.ndarray]) – A list of numpy arrays each repre-
senting an objective vector.

Note: The objective vector at position ‘i’ in objective_vectors should correspond to the decision variables at
position ‘i’ in solution_vectors. Only the two first entries in each of the lists is relevant. The preferred solution
will be selected from objective_vectors.

34 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Attributes Summary

response

Methods Summary

validator(response) Validates a response dictionary.

Attributes Documentation

response

Methods Documentation

validator(response)
Validates a response dictionary. The dictionary should contain the keys ‘index’ and ‘continue’.

‘index’ is an integer and should indicate the index of the preferred solution is objective_vectors. ‘continue’
is a boolean and indicates whether to stop or continue the iteration of Synchronous NIMBUS.

Parameters response (Dict) – See the documentation for validator.

Raises NimbusException – Some discrepancy is encountered in the parsing of response.

NimbusSaveRequest

class desdeo_mcdm.interactive.NimbusSaveRequest(solution_vectors, objective_vectors)
Bases: desdeo_tools.interaction.request.BaseRequest

A request to handle archiving of the solutions computed with NIMBUS.

Parameters

• solution_vectors (List[np.ndarray]) – A list of numpy arrays each represent-
ing a decision variable vector.

• objective_vectors (List[np.ndarray]) – A list of numpy arrays each repre-
senting an objective vector.

Note: The objective vector at position ‘i’ in objective_vectors should correspond to the decision variables at
position ‘i’ in solution_vectors.

2.2. For developers 35

desdeo_mcdm, Release 1.0

Attributes Summary

response

Methods Summary

validator(response) Validates a response dictionary.

Attributes Documentation

response

Methods Documentation

validator(response)
Validates a response dictionary. The dictionary should contain the keys ‘indices’.

‘indices’ should be a list of integers representing an index to the lists solutions_vectors and objec-
tive_vectors.

Parameters response (Dict) – See the documentation for validator.

Raises NimbusException – Some discrepancy is encountered in the parsing of response.

Return type None

NimbusStopRequest

class desdeo_mcdm.interactive.NimbusStopRequest(solution_final, objective_final)
Bases: desdeo_tools.interaction.request.BaseRequest

A request to handle the termination of Synchronous NIMBUS.

Parameters

• solutions_final (np.ndarray) – A numpy array containing the final decision vari-
able values.

• objective_final (np.ndarray) – A numpy array containing the final objective vari-
ables which correspond to

• solution_final. –

Note: This request expects no response.

36 Chapter 2. Installation

desdeo_mcdm, Release 1.0

ReferencePointMethod

class desdeo_mcdm.interactive.ReferencePointMethod(problem, ideal, nadir, epsilon=1e-
06, objective_names=None, mini-
mize=None)

Bases: desdeo_mcdm.interactive.InteractiveMethod.InteractiveMethod

Implements the Reference Point Method as presented in .

In the Reference Point Method, the Decision Maker (DM) specifies desirable aspiration levels for objective
functions. Vectors formed of these aspiration levels are then used to derive scalarizing functions having minimal
values at weakly, properly or Pareto optimal solutions. It is important that reference points are intuitive and easy
for the DM to specify, their consistency is not an essential requirement. Before the solution process starts, some
information is given to the DM about the problem. If possible, the ideal objective vector and the (approximated)
nadir objective vector are presented.

At each iteration, the DM is asked to give desired aspiration levels for the objective functions. Using this
information to formulate a reference point, achievement function is minimized and a (weakly, properly or)
Pareto optimal solution is obtained. This solution is then presented to the DM. In addition, k other (weakly,
properly or) Pareto optimal solutions are calculated using perturbed reference points, where k is the number
of objectives in the problem. The alternative solutions are also presented to the DM. If (s)he finds any of the k
+ 1 solutions satisfactory, the solution process is ended. Otherwise, the DM is asked to present a new reference
point and the iteration described above is repeated.

The idea in perturbed reference points is that the DM gets better understanding of the possible solutions around
the current solution. If the reference point is far from the Pareto optimal set, the DM gets a wider description
of the Pareto optimal set and if the reference point is near the Pareto optimal set, then a finer description of the
Pareto optimal set is given.

In this method, the DM has to specify aspiration levels and compare objective vectors. The DM is free to
change her/his mind during the process and can direct the solution process without being forced to understand
complicated concepts and their meaning. On the other hand, the method does not necessarily help the DM to
find more satisfactory solutions.

Parameters

• problem (MOProblem) – Problem to be solved.

• ideal (np.ndarray) – The ideal objective vector of the problem.

• nadir (np.ndarray) – The nadir objective vector of the problem. This may also be
the “worst” objective vector provided by the Decision Maker if the approximation of Nadir
vector is not applicable or if the Decision Maker wishes to provide even worse objective
vector than what the approximated Nadir vector is.

• epsilon (float) – A small number used in calculating the utopian point.

• epsilon – A small number used in calculating the utopian point. Default value is 1e-6.

• objective_names (Optional[List[str]], optional) – Names of the objec-
tives. The length of the list must match the number of elements in ideal vector.

• minimize (Optional[List[int]], optional) – Multipliers for each objective.
‘-1’ indicates maximization and ‘1’ minimization. Defaults to all objective values being
minimized.

Raises RPMException – Dimensions of ideal, nadir, objective_names, and minimize-list do not
match.

2.2. For developers 37

desdeo_mcdm, Release 1.0

Methods Summary

calculate_prp(ref_point, f_current) Calculate perturbed reference points.
handle_initial_request(request) Handles the initial request by parsing the response

appropriately.
handle_request(request) Handle the Decision Maker’s requests after the first

iteration round, so-called intermediate requests.
iterate(request) Perform the next logical iteration step based on the

given request type.
solve_asf(ref_point, x0, . . . [, . . .]) Solve Achievement scalarizing function.
start() Start the solution process with initializing the first

request.

Methods Documentation

calculate_prp(ref_point, f_current)
Calculate perturbed reference points.

Parameters

• ref_point (np.ndarray) – Current reference point.

• f_current (np.ndarray) – Current solution.

Returns Perturbed reference points.

Return type np.ndarray

handle_initial_request(request)
Handles the initial request by parsing the response appropriately.

Parameters request (RPMInitialRequest) – Initial request including the Decision
Maker’s initial preferences.

Returns New request with updated solution process information.

Return type RPMRequest

handle_request(request)
Handle the Decision Maker’s requests after the first iteration round, so-called intermediate requests.

Parameters request (RPMRequest) – Intermediate request including the Decision Maker’s
response.

Returns In case last iteration, request to stop the solution process. Otherwise, new request with
updated solution process information.

Return type Union[RPMRequest, RPMStopRequest]

iterate(request)
Perform the next logical iteration step based on the given request type.

Parameters request (Union[RPMInitialRequest, RPMRequest]) – Either initial
or intermediate request.

Returns A new request with content depending on the Decision Maker’s preferences.

Return type Union[RPMRequest, RPMStopRequest]

38 Chapter 2. Installation

desdeo_mcdm, Release 1.0

solve_asf(ref_point, x0, preferential_factors, nadir, utopian, objectives, variable_bounds=None,
method=None)

Solve Achievement scalarizing function.

Parameters

• ref_point (np.ndarray) – Reference point.

• x0 (np.ndarray) – Initial values for decision variables.

• preferential_factors (np.ndarray) – Preferential factors on how much would
the Decision Maker wish to improve the values of each objective function.

• nadir (np.ndarray) – Nadir vector.

• utopian (np.ndarray) – Utopian vector.

• objectives (np.ndarray) – The objective function values for each input vector.

• variable_bounds (Optional[np.ndarray) – Lower and upper bounds of each
variable as a 2D numpy array. If undefined variables, None instead.

• method (Union[ScalarMethod, str, None]) – The optimization method the
scalarizer should be minimized with.

Returns A dictionary with at least the following entries: ‘x’ indicating the optimal variables
found, ‘fun’ the optimal value of the optimized function, and ‘success’ a boolean indicating
whether the optimization was conducted successfully.

Return type dict

start()
Start the solution process with initializing the first request.

Returns Initial request.

Return type RPMInitialRequest

RPMException

exception desdeo_mcdm.interactive.RPMException
Raised when an exception related to Reference Point Method (RFM) is encountered.

RPMInitialRequest

class desdeo_mcdm.interactive.RPMInitialRequest(ideal, nadir)
Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle the Decision Maker’s initial preferences for the first iteration round.

2.2. For developers 39

desdeo_mcdm, Release 1.0

Attributes Summary

response

Methods Summary

init_with_method(method) Initialize request with given instance of Reference-
PointMethod.

Attributes Documentation

response

Methods Documentation

classmethod init_with_method(method)
Initialize request with given instance of ReferencePointMethod.

Parameters method (ReferencePointMethod) – Instance of ReferencePointMethod-
class.

Returns Initial request.

Return type RPMInitialRequest

RPMRequest

class desdeo_mcdm.interactive.RPMRequest(f_current, f_additionals, ideal, nadir)
Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle the Decision Maker’s preferences after the first iteration round.

Attributes Summary

response

Attributes Documentation

response

40 Chapter 2. Installation

desdeo_mcdm, Release 1.0

RPMStopRequest

class desdeo_mcdm.interactive.RPMStopRequest(x_h, f_h)
Bases: desdeo_tools.interaction.request.BaseRequest

A request class to handle termination.

Class Inheritance Diagram

BaseRequest

ENautilusInitialRequest

ENautilusRequest

ENautilusStopRequest

NautilusInitialRequest

NautilusNavigatorRequest

NautilusRequest

NautilusStopRequest

NimbusClassificationRequest

NimbusIntermediateSolutionsRequest

NimbusMostPreferredRequest

NimbusSaveRequest

NimbusStopRequest

RPMInitialRequest

RPMRequest

RPMStopRequest

FrozenClass

ENautilus

InteractiveMethod

NIMBUS

Nautilus

NautilusNavigator

NautilusV2

ReferencePointMethod

ENautilusException

NautilusException

NautilusNavigatorException

NimbusException

RPMException

2.2. For developers 41

desdeo_mcdm, Release 1.0

desdeo_mcdm.utilities Package

This module contains various utilities used in different interactive methods.

Functions

payoff_table_method(problem[, . . .]) Uses the payoff table method to solve for the ideal and
nadir points of a MOProblem.

payoff_table_method_general(. . . [, . . .]) Solves a representation for the nadir and ideal points for
a multiobjective minimization problem with objectives
defined as the result of some objective evaluator.

solve_pareto_front_representation(problem[,
. . .])

Pass through to solve_pareto_front_representation_general
when the problem for which the front is being calculated
for is defined as an MOProblem object.

solve_pareto_front_representation_general(. . .)Computes a representation of a Pareto efficient front
from a multiobjective minimizatino problem.

weighted_scalarizer(xs, ws) A simple linear weight based scalarizer.

payoff_table_method

desdeo_mcdm.utilities.payoff_table_method(problem, initial_guess=None,
solver_method='scipy_de')

Uses the payoff table method to solve for the ideal and nadir points of a MOProblem. Call through to pay-
off_table_method_general.

Parameters

• problem (MOProblem) – The problem defined as a MOProblem class instance.

• initial_guess (Optional[np.ndarray]) – The initial guess of decision variables
to be used in the solver. If None, uses the lower bounds defined for the variables in MO-
Problem. Defaults to None.

• solver_method (Optional[Union[ScalarMethod, str]]) – The method
used to minimize the invidual problems in the payoff table method. Defaults to ‘scipy_de’.

Returns The ideal and nadir points

Return type Tuple[np.ndarray, np.ndarray]

payoff_table_method_general

desdeo_mcdm.utilities.payoff_table_method_general(objective_evaluator,
n_of_objectives, variable_bounds,
constraint_evaluator=None,
initial_guess=None,
solver_method='scipy_de')

Solves a representation for the nadir and ideal points for a multiobjective minimization problem with objectives
defined as the result of some objective evaluator.

Parameters

• objective_evaluator (Callable[[np.ndarray], np.ndarray]) – The
evaluator which returns the objective values given a set of variabels.

42 Chapter 2. Installation

desdeo_mcdm, Release 1.0

• n_of_objectives (int) – Number of objectives returned by calling objec-
tive_evaluator.

• variable_bounds (np.ndarray) – The lower and upper bounds of the variables
passed as argument to objective_evaluator. Should be a 2D numpy array with the limits
for each variable being on each row. The first column should contain the lower bounds, and
the second column the upper bounds. Use np.inf to indicate no bounds.

• constraint_evaluator (Optional[Callable[[np.ndarray], np.
ndarray]], optional) – An evaluator accepting the same arguments as objec-
tive_evaluator, which returns the constraint values of the multiobjective minimization
problem being solved. A negative constraint value indicates a broken constraint. Defaults
to None.

• initial_guess (Optional[np.ndarray], optional) – The initial guess used
for the variable values while solving the payoff table. The relevancy of this parameter de-
pends on the solver_method being used. Defaults to None.

• solver_method (Optional[Union[ScalarMethod, str]], optional) –
The method to solve the scalarized problems in the payoff table method. Defaults to
“scipy_de”, which ignores initial_guess.

Returns The representations computed using the payoff table for the ideal and nadir points respec-
tively.

Return type Tuple[np.ndarray, np.ndarray]

solve_pareto_front_representation

desdeo_mcdm.utilities.solve_pareto_front_representation(problem, step=0.1,
eps=1e-06,
solver_method='scipy_de')

Pass through to solve_pareto_front_representation_general when the problem for which the front is being cal-
culated for is defined as an MOProblem object.

Computes a representation of a Pareto efficient front from a multiobjective minimizatino problem. Does so by
generating an evenly spaced set of reference points (in the objective space), in the space spanned by the supplied
ideal and nadir points. The generated reference points are then used to formulate achievement scalaraization
problems, which when solved, yield a representation of a Pareto efficient solution.

Parameters

• problem (MOProblem) – The multiobjective minimization problem for which the front
is to be solved for.

• step (Optional[Union[np.ndarray, float]], optional) – Either a float
or an array of floats. If a single float is given, generates reference points with the objectives
having values a step apart between the ideal and nadir points. If an array of floats is given,
use the steps defined in the array for each objective’s values. Default to 0.1.

• eps (Optional[float], optional) – An offset to be added to the nadir value to
keep the nadir inside the range when generating reference points. Defaults to 1e-6.

• solver_method (Optional[Union[ScalarMethod, str]], optional) –
The method used to minimize the achievement scalarization problems arising when cal-
culating Pareto efficient solutions. Defaults to “scipy_de”.

Returns A tuple containing representations of the Pareto optimal variable values, and the correspon-
sing objective values.

2.2. For developers 43

desdeo_mcdm, Release 1.0

Return type Tuple[np.ndarray, np.ndarray]

solve_pareto_front_representation_general

desdeo_mcdm.utilities.solve_pareto_front_representation_general(objective_evaluator,
n_of_objectives,
vari-
able_bounds,
step=0.1,
eps=1e-06,
ideal=None,
nadir=None,
con-
straint_evaluator=None,
solver_method='scipy_de')

Computes a representation of a Pareto efficient front from a multiobjective minimizatino problem. Does so by
generating an evenly spaced set of reference points (in the objective space), in the space spanned by the supplied
ideal and nadir points. The generated reference points are then used to formulate achievement scalaraization
problems, which when solved, yield a representation of a Pareto efficient solution. The result is guaranteed to
contain only non-dominated solutions.

Parameters

• objective_evaluator (Callable[[np.ndarray], np.ndarray]) – A vec-
tor valued function returning objective values given an array of decision variables.

• n_of_objectives (int) – Numbr of objectives returned by objective_evaluator.

• variable_bounds (np.ndarray) – The upper and lower bounds of the decision vari-
ables. Bound for each variable should be on the rows, with the first column containing lower
bounds, and the second column upper bounds. Use np.inf to indicate no bounds.

• step (Optional[Union[np.ndarray, float]], optional) – Etiher an float
or an array of floats. If a single float is given, generates reference points with the objectives
having values a step apart between the ideal and nadir points. If an array of floats is given,
use the steps defined in the array for each objective’s values. Default to 0.1.

• eps (Optional[float], optional) – An offset to be added to the nadir value to
keep the nadir inside the range when generating reference points. Defaults to 1e-6.

• ideal (Optional[np.ndarray], optional) – The ideal point of the problem be-
ing solved. Defaults to None.

• nadir (Optional[np.ndarray], optional) – The nadir point of the problem
being solved. Defaults to None.

• constraint_evaluator (Optional[Callable[[np.ndarray], np.
ndarray]], optional) – An evaluator returning values for the constraints defined
for the problem. A negative value for a constraint indicates a breach of that constraint.
Defaults to None.

• solver_method (Optional[Union[ScalarMethod, str]], optional) –
The method used to minimize the achievement scalarization problems arising when cal-
culating Pareto efficient solutions. Defaults to “scipy_de”.

Raises

• MCDMUtilityException – Mismatching sizes of the supplied ideal and

44 Chapter 2. Installation

desdeo_mcdm, Release 1.0

• nadir points between the step, when step is an array. Or the
type of –

• step is something else than np.ndarray of float. –

Returns A tuple containing representationns of the Pareto optimal variable values, and the corre-
sponsing objective values.

Return type Tuple[np.ndarray, np.ndarray]

Note: The objective evaluator should be defined such that minimization is expected in each of the objectives.

weighted_scalarizer

desdeo_mcdm.utilities.weighted_scalarizer(xs, ws)
A simple linear weight based scalarizer.

Parameters

• xs (np.ndarray) – Values to be scalarized.

• ws (np.ndarray) – Weights to multiply each value in the summation of xs.

Returns An array of scalar values with length equal to the first dimension of xs.

Return type np.ndarray

2.2.3 Examples

NAUTILUS Navigator example

This example goes through the basic functionalities of the NAUTILUS Navigator method.

We will consider a simple 2D Pareto front which we will define next alongside the method itself. Both objectives are
to be minimized.

Because of the nature of navigation based interactive optimization methods, the idea of NAUTILUS Navigator is best
demonstrated using some graphical user interface. One such interface can be found online.

[1]: import numpy as np
from desdeo_mcdm.interactive.NautilusNavigator import NautilusNavigator

half of a parabola to act as a Pareto front
f1 = np.linspace(1, 100, 50)
f2 = f1[::-1] ** 2

front = np.stack((f1, f2)).T
ideal = np.min(front, axis=0)
nadir = np.max(front, axis=0)

method = NautilusNavigator((front), ideal, nadir)

To start, we can invoke the start method.

2.2. For developers 45

https://dash.misitano.xyz

desdeo_mcdm, Release 1.0

[2]: req_first = method.start()

print(req_first)
print(req_first.content.keys())

<desdeo_mcdm.interactive.NautilusNavigator.NautilusNavigatorRequest object at
→˓0x7ff8807cfd60>
dict_keys(['message', 'ideal', 'nadir', 'reachable_lb', 'reachable_ub', 'reachable_idx
→˓', 'step_number', 'steps_remaining', 'distance', 'allowed_speeds', 'current_speed',
→˓'navigation_point'])

The returned object is a NautilusNavigatorRequest. The keys should give an idea of what the contents of the request
are. We will explain most of the in this example.

At the moment, the nadir, reachable_lb and reachable_ub are most interesting to us. Navigation starts from
the nadir and will proceed toward the Pareto optimal front enclosed between the limits defined in reachable_lb
and reachable_ub.

To interact with the method, we must fill out the response member of req. Let’s see the contents of the message
in req next.

[3]: print(req_first.content["message"])

Please supply aspirations levels for each objective between the upper and lower
→˓bounds as `reference_point`. Specify a speed between 1-5 as `speed`. If going to a
→˓previous step is desired, please set `go_to_previous` to True, otherwise it should
→˓be False. Lastly, if stopping is desired, `stop` should be True, otherweise it
→˓should be set to False.

We should define the required values and set them as keys of a dictionary. Before that, it is useful to see the bounds to
know the currently feasible objective values.

[4]: print(req_first.content["reachable_lb"])
print(req_first.content["reachable_ub"])

[1. 1.]
[100. 10000.]

[5]: reference_point = np.array([50, 6000])
go_to_previous = False
stop = False
speed = 1

response = dict(reference_point=reference_point, go_to_previous=False, stop=False,
→˓speed=1)

go_to_previous should be set to False unless we desire going to a previous point. stop should be True if
we wish to stop, otherwise it should be False. speed is the speed of the navigation. It is not used internally in
the method. To continue, we call iterate with suppliying the req object with a defined response attribute. We
should get a new request as a return value.

[6]: req_first.response = response
req_snd = method.iterate(req_first)

print(req_snd.content["reachable_lb"])
print(req_snd.content["reachable_ub"])

[3.02040816 9.12286547]
[100. 10000.]

46 Chapter 2. Installation

desdeo_mcdm, Release 1.0

We see that the bounds have narrowed down as they should.

In reality, iterate should be called multiple times in succession with the same response contents. We can do
this in a loop until the 30th step is computed, for example. NB: Steps are internally zero-index based.

[7]: previous_requests = [req_first, req_snd]
req = req_snd
while method._step_number < 30:

req.response = response
req = method.iterate(req)

previous_requests.append(req)

print(req.content["reachable_lb"])
print(req.content["reachable_ub"])
print(req.content["step_number"])

[11.10204082 449.61307788]
[81.81632653 8081.64306539]
30

The region of reachable Pareto optimal solutions had narrowed down. Suppose now we wish to return to a previous
step and change our preferences. Let’s say, step 14.

[8]: # fetch the 14th step saved previously
req_14 = previous_requests[13]
print(req_14.content["reachable_lb"])
print(req_14.content["reachable_ub"])
print(req_14.content["step_number"])

req_14.response["go_to_previous"] = True
req_14.response["reference_point"] = np.array([50, 5000])
new_response = req_14.response

[5.04081633 123.25531029]
[91.91836735 9208.16493128]
14

When going to a previous point, the method assumes thath the state the method was in during that point is fully defined
in the request object given to it when calling iterate with go_to_previous being True. This is why we saved
the request previously in a list.

[9]: req_14_new = method.iterate(req_14)
req = req_14_new

remember to unser go_to_previous!
new_response["go_to_previous"] = False

continue iterating for 16 steps
while method._step_number < 30:

req.response = new_response
req = method.iterate(req)

print("Old 30th step")
print(previous_requests[29].content["reachable_lb"])
print(previous_requests[29].content["reachable_ub"])
print(previous_requests[29].content["step_number"])

print("New 30th step")

(continues on next page)

2.2. For developers 47

desdeo_mcdm, Release 1.0

(continued from previous page)

print(req.content["reachable_lb"])
print(req.content["reachable_ub"])
print(req.content["step_number"])

Old 30th step
[11.10204082 449.61307788]
[81.81632653 8081.64306539]
30
New 30th step
[11.10204082 368.01332778]
[81.81632653 8081.64306539]
30

We can see a difference in the limits when we changed the preference point.

To find the final solution, we can iterate till the end.

[10]: while method._step_number < 100:
req.response = new_response
req = method.iterate(req)

print(req.content["reachable_idx"])

19

When finished navigating, the method will return the index of the reached solution based on the supplied Pareto front.
It is assumed that if decision variables also exist for the problem, they are stored elwhere. The final index returned can
then be used to find the corresponding decision variables to the found solution in objective space.

[]:

Example on the usage of NIMBUS

This notebook will go through a simple example to illustrate how the synchronous variant of NIMBUS has been
implemented in the DESDEO framework.

We will be solving the Kursawe function originally defined in this article

Let us begin by importing some libraries and defining the problem.

[1]: import numpy as np

import matplotlib.pyplot as plt
from desdeo_problem.Problem import MOProblem
from desdeo_problem.Variable import variable_builder
from desdeo_problem.Objective import _ScalarObjective

def f_1(xs: np.ndarray):
xs = np.atleast_2d(xs)
xs_plusone = np.roll(xs, 1, axis=1)
return np.sum(-10*np.exp(-0.2*np.sqrt(xs[:, :-1]**2 + xs_plusone[:, :-1]**2)),

→˓axis=1)

def f_2(xs: np.ndarray):
xs = np.atleast_2d(xs)
return np.sum(np.abs(xs)**0.8 + 5*np.sin(xs**3), axis=1)

(continues on next page)

48 Chapter 2. Installation

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8050&rep=rep1&type=pdf

desdeo_mcdm, Release 1.0

(continued from previous page)

varsl = variable_builder(
["x_1", "x_2", "x_3"],
initial_values=[0, 0, 0],
lower_bounds=[-5, -5, -5],
upper_bounds=[5, 5, 5],

)

f1 = _ScalarObjective(name="f1", evaluator=f_1)
f2 = _ScalarObjective(name="f2", evaluator=f_2)

problem = MOProblem(variables=varsl, objectives=[f1, f2], ideal=np.array([-20, -12]),
→˓nadir=np.array([-14, 0.5]))

To check out problem, let us compute a representation of the Pareto optimal front of solutions:

[2]: from desdeo_mcdm.utilities.solvers import solve_pareto_front_representation

p_front = solve_pareto_front_representation(problem, step=1.0)[1]

plt.scatter(p_front[:, 0], p_front[:, 1], label="Pareto front")
plt.scatter(problem.ideal[0], problem.ideal[1], label="Ideal")
plt.scatter(problem.nadir[0], problem.nadir[1], label="Nadir")
plt.xlabel("f1")
plt.ylabel("f2")
plt.title("Approximate Pareto front of the Kursawe function")
plt.legend()
plt.show()

Now we can get to the NIMBUS part. Let us define an instance of the NIMBUS method utilizing our problem defined
earlier, and start by invoking the instance’s start method:

[3]: from desdeo_mcdm.interactive.NIMBUS import NIMBUS

method = NIMBUS(problem, "scipy_de")

classification_request, plot_request = method.start()

2.2. For developers 49

desdeo_mcdm, Release 1.0

Let us look at the keys in the dictionary contained in the classification_request:

[4]: print(classification_request.content.keys())

dict_keys(['message', 'objective_values', 'classifications', 'levels', 'number_of_
→˓solutions'])

Message should give us some more information:

[5]: print(classification_request.content["message"])

Please classify each of the objective values in one of the following categories:
1. values should improve '<'
2. values should improve until some desired aspiration level is reached '<='
3. values with an acceptable level '='
4. values which may be impaired until some upper bound is reached '>='
5. values which are free to change '0'

Provide the aspiration levels and upper bounds as a vector. For categories 1, 3, and
→˓5,the value in the vector at the objective's position is ignored. Suppy also the
→˓number of maximumsolutions to be generated.

We should therefore classify each of the objectives found beind the objective_values -key in the dictionary in
classification_request.content. Let’s print them:

[6]: print(classification_request.content["objective_values"])

[-15.88641547 -7.74757837]

Instead of printing the values, we could have also used the plot_request object. However, we are inspecting
only one set of objective values for the time being, so a raw print of the values should be enough. Let us classify the
objective values next. We can get a hint of what the classification should look like by inspecting the value found using
the classifications -key in classification_request.content:

[7]: print(classification_request.content["classifications"])

[None]

Therefore it should be a list. Suppose we wish to improve (decrease in value) the first objective, and impair (increase
in value) the second objective till some upper bound is reached. We should define our preferences as a dictionary
classification_request.response with the keys classifications and number_of_solutions
(we have to define the number of new solutions we wish to compute). The key levels will contain the upper bound
for the second objective.

[8]: response = {
"classifications": ["<", ">="],
"number_of_solutions": 3,
"levels": [0, -5]

}
classification_request.response = response

To continue, just feed classification_request back to the method through the step method:

[9]: save_request, plot_request = method.iterate(classification_request)

We got a new request as a response. Let us inspect it:

[10]: print(save_request.content.keys())
print(save_request.content["message"])
print(save_request.content["objectives"])

50 Chapter 2. Installation

desdeo_mcdm, Release 1.0

dict_keys(['message', 'solutions', 'objectives', 'indices'])
Please specify which solutions shown you would like to save for later viewing. Supply
→˓the indices of such solutions as a list, or supply an empty list if none of the
→˓shown soulutions should be saved.
[array([-1.99999999e+01, 2.34193302e-06]), array([-1.99999998e+01, 3.34684282e-06]),
→˓ array([-18.46633851, -1.81760788])]

Suppose the first and last solutions result in nice objective values.

[11]: response = {"indices": [0, 2]}
save_request.response = response

intermediate_request, plot_request = method.iterate(save_request)

[12]: print(intermediate_request.content.keys())
print(intermediate_request.content["message"])

dict_keys(['message', 'solutions', 'objectives', 'indices', 'number_of_desired_
→˓solutions'])
Would you like to see intermediate solutions between two previusly computed solutions?
→˓ If so, please supply two indices corresponding to the solutions.

We do not desire to see intermediate results.

[13]: response = {"number_of_desired_solutions": 0, "indices": []}
intermediate_request.response = response

preferred_request, plot_request = method.iterate(intermediate_request)

[14]: print(preferred_request.content.keys())
print(preferred_request.content["message"])

dict_keys(['message', 'solutions', 'objectives', 'index', 'continue'])
Please select your most preferred solution and whether you would like to continue.

We should select our most preferred solution. Let us plot the objective values to inspect them better:

[15]: plt.scatter(p_front[:, 0], p_front[:, 1], label="Pareto front")
plt.scatter(problem.ideal[0], problem.ideal[1], label="Ideal")
plt.scatter(problem.nadir[0], problem.nadir[1], label="Nadir")
for i, z in enumerate(preferred_request.content["objectives"]):

plt.scatter(z[0], z[1], label=f"solution {i}")
plt.xlabel("f1")
plt.ylabel("f2")
plt.title("Approximate Pareto front of the Kursawe function")
plt.legend()
plt.show()

2.2. For developers 51

desdeo_mcdm, Release 1.0

Solutions at indices 0 and 2 seem to be overlapping in the objective space. We decide to select the solution at index 1,
and to continue the iterations.

[16]: response = {"index": 1, "continue": True}
preferred_request.response = response

classification_request, plot_request = method.iterate(preferred_request)

Back at the classification pahse of the NIMBUS method.

[17]: response = {
"classifications": [">=", "<"],
"number_of_solutions": 4,
"levels": [-16, -1]

}
classification_request.response = response

save_request, plot_request = method.iterate(classification_request)

Let us plot some of the solutions again:

[18]: plt.scatter(p_front[:, 0], p_front[:, 1], label="Pareto front")
plt.scatter(problem.ideal[0], problem.ideal[1], label="Ideal")
plt.scatter(problem.nadir[0], problem.nadir[1], label="Nadir")
for i, z in enumerate(save_request.content["objectives"]):

plt.scatter(z[0], z[1], label=f"solution {i}")
plt.xlabel("f1")
plt.ylabel("f2")
plt.title("Approximate Pareto front of the Kursawe function")
plt.legend()
plt.show()

52 Chapter 2. Installation

desdeo_mcdm, Release 1.0

NIMBUS really took to heart our request to detoriate the first objective. . . Suppose we like all of the solutions:

[19]: response = {"indices": [0, 1, 2, 3]}
save_request.response = response

intermediate_request, plot_request = method.iterate(save_request)

Let us plot everything we have so far:

[20]: plt.scatter(p_front[:, 0], p_front[:, 1], label="Pareto front")
plt.scatter(problem.ideal[0], problem.ideal[1], label="Ideal")
plt.scatter(problem.nadir[0], problem.nadir[1], label="Nadir")
for i, z in enumerate(intermediate_request.content["objectives"]):

plt.scatter(z[0], z[1], label=f"solution {i}")
plt.xlabel("f1")
plt.ylabel("f2")
plt.title("Approximate Pareto front of the Kursawe function")
plt.legend()
plt.show()

2.2. For developers 53

desdeo_mcdm, Release 1.0

Assume we really like what we have between solution 3 and 4. Let NIMBUS compute 3 intermediate solutions
between them:

[21]: response = {
"indices": [3, 4],
"number_of_desired_solutions": 3,
}

intermediate_request.response = response

save_request, plot_request = method.iterate(intermediate_request)

Plot the intermediate solutions:

[22]: plt.scatter(p_front[:, 0], p_front[:, 1], label="Pareto front")
plt.scatter(problem.ideal[0], problem.ideal[1], label="Ideal")
plt.scatter(problem.nadir[0], problem.nadir[1], label="Nadir")
for i, z in enumerate(save_request.content["objectives"]):

plt.scatter(z[0], z[1], label=f"solution {i}")
plt.xlabel("f1")
plt.ylabel("f2")
plt.title("Approximate Pareto front of the Kursawe function")
plt.legend()
plt.show()

54 Chapter 2. Installation

desdeo_mcdm, Release 1.0

Nice, we are really getting there, even if we have no goal set. . . Let us save solution 1:

[23]: response = {"indices": [1]}
save_request.response = response

intermediate_request, plot_request = method.iterate(save_request)

We do not wish to generate any more intermediate solutions.

[24]: response = {"number_of_desired_solutions": 0, "indices": []}
intermediate_request.response = response

preferred_request, plot_request = method.iterate(intermediate_request)

Let us plot everything we have, and select a final solution:

[25]: plt.scatter(p_front[:, 0], p_front[:, 1], label="Pareto front")
plt.scatter(problem.ideal[0], problem.ideal[1], label="Ideal")
plt.scatter(problem.nadir[0], problem.nadir[1], label="Nadir")
for i, z in enumerate(preferred_request.content["objectives"]):

plt.scatter(z[0], z[1], label=f"solution {i}")
plt.xlabel("f1")
plt.ylabel("f2")
plt.title("Approximate Pareto front of the Kursawe function")
plt.legend()
plt.show()

2.2. For developers 55

desdeo_mcdm, Release 1.0

We REALLY like solution 6, so let us go with that:

[26]: response = {
"index": 6,
"continue": False,
}

preferred_request.response = response

print("hello")
print(preferred_request)

stop_request, plot_request = method.iterate(preferred_request)

print(stop_request)

hello
<desdeo_mcdm.interactive.NIMBUS.NimbusMostPreferredRequest object at 0x7f5078418940>
<desdeo_mcdm.interactive.NIMBUS.NimbusStopRequest object at 0x7f507a67b670>

We are done, let us bask in the glory of the solution found:

[27]: print(f"Final decision variables: {stop_request.content['solution']}")

plt.scatter(p_front[:, 0], p_front[:, 1], label="Pareto front")
plt.scatter(problem.ideal[0], problem.ideal[1], label="Ideal")
plt.scatter(problem.nadir[0], problem.nadir[1], label="Nadir")
plt.scatter(stop_request.content["objective"][0], stop_request.content["objective
→˓"][1], label=f"final solution")
plt.xlabel("f1")
plt.ylabel("f2")
plt.title("Approximate Pareto front of the Kursawe function")
plt.legend()
plt.show()

Final decision variables: [-1.02767713 -1.09988959 -1.09984277]

56 Chapter 2. Installation

desdeo_mcdm, Release 1.0

2.2. For developers 57

desdeo_mcdm, Release 1.0

58 Chapter 2. Installation

CHAPTER

THREE

CURRENTLY IMPLEMENTED METHODS

Algorithm Reference
Synchronous NIM-
BUS

Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective opti-
mization. Eur. J. Oper. Res. 170(3), 909–922 (2006)

NAUTILUS Navi-
gator

Ruiz, A. B., Ruiz, F., Miettinen, K., Delgado-Antequera, L., & Ojalehto, V. (2019). NAU-
TILUS Navigator : free search interactive multiobjective optimization without trading-off.
Journal of Global Optimization, 74 (2), 213-231. doi:10.1007/s10898-019-00765-2

E-NAUTILUS Ruiz, A., Sindhya, K., Miettinen, K., Ruiz, F., & Luque, M. (2015). E-NAUTILUS:
A decision support system for complex multiobjective optimization problems based on
the NAUTILUS method. European Journal of Operational Research, 246 (1), 218-231.
doi:10.1016/j.ejor.2015.04.027

NAUTILUS Kaisa Miettinen, Petri Eskelinen, Francisco Ruiz, Mariano Luque, NAUTILUS method:
An interactive technique in multiobjective optimization based on the nadir point, European
Journal of Operational Research, Volume 206, Issue 2, 2010, Pages 426-434, ISSN 0377-
2217, https://doi.org/10.1016/j.ejor.2010.02.041.

Reference Point
Method

Andrzej P. Wierzbicki, A mathematical basis for satisficing decision making, Mathematical
Modelling, Volume 3, Issue 5,1982, Pages 391-405, ISSN 0270-0255, https://doi.org/10.
1016/0270-0255(82)90038-0.

NAUTILUSv2 Miettinen, K., Podkopaev, D., Ruiz, F. et al. A new preference handling technique for inter-
active multiobjective optimization without trading-off. J Glob Optim 63, 633–652 (2015).
https://doi.org/10.1007/s10898-015-0301-8

59

https://doi.org/10.1016/j.ejor.2010.02.041
https://doi.org/10.1016/0270-0255(82)90038-0
https://doi.org/10.1016/0270-0255(82)90038-0
https://doi.org/10.1007/s10898-015-0301-8

desdeo_mcdm, Release 1.0

60 Chapter 3. Currently implemented methods

CHAPTER

FOUR

COMING SOON

• Pareto Navigator

61

desdeo_mcdm, Release 1.0

62 Chapter 4. Coming soon

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

63

desdeo_mcdm, Release 1.0

64 Chapter 5. Indices and tables

PYTHON MODULE INDEX

d
desdeo_mcdm.interactive, 7
desdeo_mcdm.utilities, 42

65

desdeo_mcdm, Release 1.0

66 Python Module Index

INDEX

Symbols
_valid_classifications (des-

deo_mcdm.interactive.NimbusClassificationRequest.self
attribute), 32

C
calculate_bounds() (des-

deo_mcdm.interactive.ENautilus method),
11

calculate_bounds() (des-
deo_mcdm.interactive.Nautilus method),
15

calculate_bounds() (des-
deo_mcdm.interactive.NautilusNavigator
method), 25

calculate_bounds() (des-
deo_mcdm.interactive.NautilusV2 method),
20

calculate_distance() (des-
deo_mcdm.interactive.Nautilus method),
15

calculate_distance() (des-
deo_mcdm.interactive.NautilusNavigator
method), 25

calculate_distance() (des-
deo_mcdm.interactive.NautilusV2 method),
20

calculate_distances() (des-
deo_mcdm.interactive.ENautilus method),
11

calculate_doi() (des-
deo_mcdm.interactive.NautilusV2 method),
20

calculate_intermediate_points() (des-
deo_mcdm.interactive.ENautilus method),
11

calculate_iteration_point() (des-
deo_mcdm.interactive.Nautilus method),
16

calculate_iteration_point() (des-
deo_mcdm.interactive.NautilusV2 method),
20

calculate_navigation_point() (des-
deo_mcdm.interactive.NautilusNavigator
method), 25

calculate_new_solutions() (des-
deo_mcdm.interactive.NIMBUS method),
29

calculate_preferential_factors() (des-
deo_mcdm.interactive.Nautilus method), 16

calculate_preferential_factors() (des-
deo_mcdm.interactive.NautilusV2 method),
20

calculate_prp() (des-
deo_mcdm.interactive.ReferencePointMethod
method), 38

calculate_reachable_point_indices()
(desdeo_mcdm.interactive.ENautilus method),
11

calculate_reachable_point_indices()
(desdeo_mcdm.interactive.NautilusNavigator
method), 25

calculate_representative_points() (des-
deo_mcdm.interactive.ENautilus method),
11

compute_intermediate_solutions() (des-
deo_mcdm.interactive.NIMBUS method),
29

create_plot_request() (des-
deo_mcdm.interactive.NIMBUS method),
30

D
desdeo_mcdm.interactive

module, 7
desdeo_mcdm.utilities

module, 42

E
ENautilus (class in desdeo_mcdm.interactive), 10
ENautilusException, 12
ENautilusInitialRequest (class in des-

deo_mcdm.interactive), 12
ENautilusRequest (class in des-

deo_mcdm.interactive), 13

67

desdeo_mcdm, Release 1.0

ENautilusStopRequest (class in des-
deo_mcdm.interactive), 13

H
handle_classification_request() (des-

deo_mcdm.interactive.NIMBUS method),
30

handle_initial_request() (des-
deo_mcdm.interactive.ENautilus method),
11

handle_initial_request() (des-
deo_mcdm.interactive.Nautilus method),
17

handle_initial_request() (des-
deo_mcdm.interactive.NautilusV2 method),
21

handle_initial_request() (des-
deo_mcdm.interactive.ReferencePointMethod
method), 38

handle_intermediate_solutions_request()
(desdeo_mcdm.interactive.NIMBUS method),
30

handle_most_preferred_request() (des-
deo_mcdm.interactive.NIMBUS method),
30

handle_request() (des-
deo_mcdm.interactive.ENautilus method),
11

handle_request() (des-
deo_mcdm.interactive.Nautilus method),
17

handle_request() (des-
deo_mcdm.interactive.NautilusNavigator
method), 25

handle_request() (des-
deo_mcdm.interactive.NautilusV2 method),
21

handle_request() (des-
deo_mcdm.interactive.ReferencePointMethod
method), 38

handle_save_request() (des-
deo_mcdm.interactive.NIMBUS method),
30

I
init_with_method() (des-

deo_mcdm.interactive.ENautilusInitialRequest
class method), 13

init_with_method() (des-
deo_mcdm.interactive.NautilusInitialRequest
class method), 23

init_with_method() (des-
deo_mcdm.interactive.NautilusNavigatorRequest
class method), 28

init_with_method() (des-
deo_mcdm.interactive.RPMInitialRequest
class method), 40

iterate() (desdeo_mcdm.interactive.ENautilus
method), 12

iterate() (desdeo_mcdm.interactive.Nautilus
method), 17

iterate() (desdeo_mcdm.interactive.NautilusNavigator
method), 25

iterate() (desdeo_mcdm.interactive.NautilusV2
method), 22

iterate() (desdeo_mcdm.interactive.NIMBUS
method), 31

iterate() (desdeo_mcdm.interactive.ReferencePointMethod
method), 38

M
module

desdeo_mcdm.interactive, 7
desdeo_mcdm.utilities, 42

N
Nautilus (class in desdeo_mcdm.interactive), 14
NautilusException, 23
NautilusInitialRequest (class in des-

deo_mcdm.interactive), 23
NautilusNavigator (class in des-

deo_mcdm.interactive), 24
NautilusNavigatorException, 27
NautilusNavigatorRequest (class in des-

deo_mcdm.interactive), 27
NautilusRequest (class in des-

deo_mcdm.interactive), 23
NautilusStopRequest (class in des-

deo_mcdm.interactive), 24
NautilusV2 (class in desdeo_mcdm.interactive), 18
NIMBUS (class in desdeo_mcdm.interactive), 28
NimbusClassificationRequest (class in des-

deo_mcdm.interactive), 32
NimbusException, 32
NimbusIntermediateSolutionsRequest (class

in desdeo_mcdm.interactive), 33
NimbusMostPreferredRequest (class in des-

deo_mcdm.interactive), 34
NimbusSaveRequest (class in des-

deo_mcdm.interactive), 35
NimbusStopRequest (class in des-

deo_mcdm.interactive), 36

P
payoff_table_method() (in module des-

deo_mcdm.utilities), 42
payoff_table_method_general() (in module

desdeo_mcdm.utilities), 42

68 Index

desdeo_mcdm, Release 1.0

R
ReferencePointMethod (class in des-

deo_mcdm.interactive), 37
request_classification() (des-

deo_mcdm.interactive.NIMBUS method),
31

request_most_preferred_solution() (des-
deo_mcdm.interactive.NIMBUS method),
31

request_stop() (des-
deo_mcdm.interactive.NIMBUS method),
31

response (desdeo_mcdm.interactive.ENautilusInitialRequest
attribute), 12

response (desdeo_mcdm.interactive.ENautilusRequest
attribute), 13

response (desdeo_mcdm.interactive.NautilusInitialRequest
attribute), 23

response (desdeo_mcdm.interactive.NautilusNavigatorRequest
attribute), 28

response (desdeo_mcdm.interactive.NautilusRequest
attribute), 24

response (desdeo_mcdm.interactive.NimbusClassificationRequest
attribute), 33

response (desdeo_mcdm.interactive.NimbusIntermediateSolutionsRequest
attribute), 34

response (desdeo_mcdm.interactive.NimbusMostPreferredRequest
attribute), 35

response (desdeo_mcdm.interactive.NimbusSaveRequest
attribute), 36

response (desdeo_mcdm.interactive.RPMInitialRequest
attribute), 40

response (desdeo_mcdm.interactive.RPMRequest at-
tribute), 40

RPMException, 39
RPMInitialRequest (class in des-

deo_mcdm.interactive), 39
RPMRequest (class in desdeo_mcdm.interactive), 40
RPMStopRequest (class in desdeo_mcdm.interactive),

41

S
save_solutions_to_archive() (des-

deo_mcdm.interactive.NIMBUS method),
31

solve_asf() (desdeo_mcdm.interactive.Nautilus
method), 17

solve_asf() (desdeo_mcdm.interactive.NautilusV2
method), 22

solve_asf() (desdeo_mcdm.interactive.ReferencePointMethod
method), 38

solve_nautilus_asf_problem() (des-
deo_mcdm.interactive.NautilusNavigator
method), 26

solve_pareto_front_representation() (in
module desdeo_mcdm.utilities), 43

solve_pareto_front_representation_general()
(in module desdeo_mcdm.utilities), 44

start() (desdeo_mcdm.interactive.ENautilus method),
12

start() (desdeo_mcdm.interactive.Nautilus method),
18

start() (desdeo_mcdm.interactive.NautilusNavigator
method), 26

start() (desdeo_mcdm.interactive.NautilusV2
method), 22

start() (desdeo_mcdm.interactive.NIMBUS method),
32

start() (desdeo_mcdm.interactive.ReferencePointMethod
method), 39

U
update() (desdeo_mcdm.interactive.NautilusNavigator

method), 26
update_current_solution() (des-

deo_mcdm.interactive.NIMBUS method),
32

V
validate_n2_preferences() (in module des-

deo_mcdm.interactive), 9
validate_n_iterations() (in module des-

deo_mcdm.interactive), 9
validate_preferences() (in module des-

deo_mcdm.interactive), 8
validate_response() (in module des-

deo_mcdm.interactive), 8
validator() (desdeo_mcdm.interactive.ENautilusInitialRequest

method), 13
validator() (desdeo_mcdm.interactive.ENautilusRequest

method), 13
validator() (desdeo_mcdm.interactive.NautilusNavigatorRequest

method), 28
validator() (desdeo_mcdm.interactive.NimbusClassificationRequest

method), 33
validator() (desdeo_mcdm.interactive.NimbusIntermediateSolutionsRequest

method), 34
validator() (desdeo_mcdm.interactive.NimbusMostPreferredRequest

method), 35
validator() (desdeo_mcdm.interactive.NimbusSaveRequest

method), 36

W
weighted_scalarizer() (in module des-

deo_mcdm.utilities), 45

Index 69

	Requirements
	Installation
	For users
	For developers

	Currently implemented methods
	Coming soon
	Indices and tables
	Python Module Index
	Index

